向量求导定义
我们对向量求导作出如下定义:
∂ xn×1∂f(x):=[∂x1∂f∂x2∂f⋯∂xn∂f]1×n,∂ x1×n∂f(x):=⎣⎢⎢⎢⎢⎢⎡∂x1∂f∂x2∂f⋮∂xn∂f⎦⎥⎥⎥⎥⎥⎤n×1∂ xn×1∂ fm×1(x):=⎣⎢⎢⎢⎢⎢⎡∂x1∂f1∂x1∂f2⋮∂x1∂fm∂x2∂f1∂x2∂f2⋮∂x2∂fm⋯⋯⋱⋯∂xn∂f1∂xn∂f2⋮∂xn∂fm⎦⎥⎥⎥⎥⎥⎤m×n,∂ x1×n∂ f1×m(x):=⎣⎢⎢⎢⎢⎢⎡∂x1∂f1∂x2∂f1⋮∂xn∂f1∂x1∂f2∂x2∂f2⋮∂xn∂f2⋯⋯⋱⋯∂x1∂fm∂x2∂fm⋮∂xn∂fm⎦⎥⎥⎥⎥⎥⎤n×m
则有如下链式法则成立:
∂x∂z=∂y∂z⋅∂x∂y,x,z∈R, y∈Rm×1
∂x∂z=∂y∂z⋅∂x∂y,z∈R, y∈Rm×1, x∈Rn×1
∂x∂z=∂x∂y⋅∂y∂z,x,z∈R, y∈R1×m
∂x∂z=∂x∂y⋅∂y∂z,z∈R, y∈R1×m, x∈R1×n
矩阵求导定义
我们对矩阵求导作出如下定义:
∂Xm×n∂f(X):=⎣⎢⎢⎢⎢⎢⎡∂X1,1∂f∂X1,2∂f⋮∂X1,n∂f∂X2,1∂f∂X2,2∂f⋮∂X2,n∂f⋯⋯⋱⋯∂Xm,1∂f∂Xm,2∂f⋮∂Xm,n∂f⎦⎥⎥⎥⎥⎥⎤n×m
无 Batch 情况(一次训练一组数据)
Xk:=⎣⎢⎢⎢⎢⎡X1kX2k⋮XDkk⎦⎥⎥⎥⎥⎤Dk×1, Wk:=⎣⎢⎢⎢⎢⎡W1,1kW2,1k⋮WDk,1kW1,2kW2,2k⋮WDk,2k⋯⋯⋱⋯W1,Dk−1kW2,Dk−1k⋮WDk,Dk−1k⎦⎥⎥⎥⎥⎤Dk×Dk−1, bk:=⎣⎢⎢⎢⎢⎡b1kb2k⋮bDkk⎦⎥⎥⎥⎥⎤Dk×1
Pk=WkXk−1+bk=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡∑j=1Dk−1W1,jkXjk−1+b1k∑j=1Dk−1W2,jkXjk−1+b2k⋮∑j=1Dk−1Wi,jkXjk−1+bik⋮∑j=1Dk−1WDk,jkXjk−1+bDkk⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤Dk×1=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡P1kP2k⋮Pik⋮PDkk⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤Dk×1
Xk=f(Pk)=⎣⎢⎢⎢⎢⎡f(P1k)f(P2k)⋮f(PDkk)⎦⎥⎥⎥⎥⎤Dk×1
那么,
∂Pk∂L=∂Xk∂L⋅∂Pk∂Xk,∂Xk∂L=∂Pk+1∂L⋅∂Xk∂Pk+1⇒∂Pk∂L=∂Pk+1∂L⋅∂Xk∂Pk+1⋅∂Pk∂Xk
其中,
∂Pk∂Xk=∂Pk∂f(Pk)=⎣⎢⎢⎢⎢⎡f′(P1k)0⋮00f′(P2k)⋮0⋯⋯⋱⋯00⋮f′(PDkk)⎦⎥⎥⎥⎥⎤Dk×Dk
∂Xk∂Pk+1⇒(∂Xk∂Pk+1)i,j=∂Xk∂(Wk+1Xk+bk+1)=∂Xjk∂(∑m=1DkWi,mk+1Xmk+bik+1)=Wi,jk+1
∂Xk∂Pk+1=Wk+1
代入得到:
∂Pk∂L=∂Pk+1∂L⋅Wk+1⋅⎣⎢⎢⎢⎢⎡f′(P1k)0⋮00f′(P2k)⋮0⋯⋯⋱⋯00⋮f′(PDkk)⎦⎥⎥⎥⎥⎤Dk×Dk
为了化简上式,我们令
f′(Pk):=⎣⎢⎢⎢⎢⎡f′(P1k)f′(P2k)⋮f′(PDkk)⎦⎥⎥⎥⎥⎤Dk×1
并记 Element-wise 乘
A=⎣⎢⎢⎢⎢⎡A1A2⋮An⎦⎥⎥⎥⎥⎤1×n,B=⎣⎢⎢⎢⎢⎡B1B2⋮Bn⎦⎥⎥⎥⎥⎤1×n,A⊙B:=⎣⎢⎢⎢⎢⎡A1B1A2B2⋮AnBn⎦⎥⎥⎥⎥⎤1×n
则原式可化简为
∂Pk∂L=(∂Pk+1∂L⋅Wk+1)⊙f′(Pk)T(1)
可见需要递推求解,即反向传播。考虑输出层(第 n 层):
∂Pn∂L=∂y∂L⋅∂Pn∂y=∂y∂L⋅∂Pn∂foutput(Pn)
∂Pn∂L=∂y∂L⊙foutput′(Pn)T(2)
接下来考虑权重梯度:
∂Wi,jk∂L=∂Pk∂L⋅∂Wi,jk∂Pk=∂Pk∂L⋅⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡0⋮0Xjk−1, row=i0⋮0⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤Dk×1=∂Pik∂L⋅Xjk−1
根据矩阵求导的定义:
∂Wk∂L=Xk−1⋅∂Pk∂L(3)
考虑偏置梯度:
∂bk∂L=∂Pk∂L⋅∂bk∂Pk,∂bk∂Pk=∂bk∂(WkXk−1+bk)=∂bk∂bk=IDk×Dk
∂bk∂L=∂Pk∂L(4)
梯度下降,更新权重与偏置(维度对齐):
W(s+1)k=W(s)k−α⋅∂W(s)k∂LT(5)
b(s+1)k=b(s)k−α⋅∂b(s)k∂LT(6)
联立 (1),(2),(3),(4),(5),(6):
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧∂Pn∂L=∂y∂L⊙foutput′(Pn)T∂Pk∂L=(∂Pk+1∂L⋅Wk+1)⊙f′(Pk)T∂Wk∂L=Xk−1⋅∂Pk∂L∂bk∂L=∂Pk∂LW(s+1)k=W(s)k−α⋅∂W(s)k∂LTb(s+1)k=b(s)k−α⋅∂b(s)k∂LT
有 Batch 情况(一次训练多组数据)
Xk:=⎣⎢⎢⎢⎢⎢⎡X1b1kX2b1k⋮XDkb1kX1b2kX2b2k⋮XDkb2k⋯⋯⋱⋯X1bDbkX2bDbk⋮XDkbDbk⎦⎥⎥⎥⎥⎥⎤Dk×Db, bk:=⎣⎢⎢⎢⎢⎡b1kb2k⋮bDkk⎦⎥⎥⎥⎥⎤Dk×1
Wk:=⎣⎢⎢⎢⎢⎡W1,1kW2,1k⋮WDk,1kW1,2kW2,2k⋮WDk,2k⋯⋯⋱⋯W1,Dk−1kW2,Dk−1k⋮WDk,Dk−1k⎦⎥⎥⎥⎥⎤Dk×Dk−1
Pk=WkXk−1+bk=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡∑j=1Dk−1W1,jkXjb1k−1+b1k∑j=1Dk−1W2,jkXjb1k−1+b2k⋮∑j=1Dk−1Wi,jkXjb1k−1+bik⋮∑j=1Dk−1WDk,jkXjb1k−1+bDkk⋯⋯⋮⋯⋮⋯∑j=1Dk−1W1,jkXjbDbk−1+b1k∑j=1Dk−1W2,jkXjbDbk−1+b2k⋮∑j=1Dk−1Wi,jkXjbDbk−1+bik⋮∑j=1Dk−1WDk,jkXjbDbk−1+bDkk⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤Dk×Db=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡P1b1kP2b1k⋮Pib1k⋮PDkb1k⋯⋯⋮⋯⋮⋯P1bDbkP2bDbk⋮PibDbk⋮PDkbDbk⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤Dk×Db
Xk=f(Pk)=⎣⎢⎢⎢⎢⎢⎡f(P1b1k)f(P2b1k)⋮f(PDkb1k)f(P1b2k)f(P2b2k)⋮f(PDkb2k)⋯⋯⋱⋯f(P1bDbk)f(P2bDbk)⋮f(PDkbDbk)⎦⎥⎥⎥⎥⎥⎤Dk×Db
那么(取合适的向量代入链式法则),
∂Pi,jk∂L=∂X:,jk∂L⋅∂Pi,jk∂X:,jk,∂X:,jk∂L=∂P:,jk+1∂L⋅∂X:,jk∂P:,jk+1⇒∂Pi,jk∂L=∂P:,jk+1∂L⋅∂X:,jk∂P:,jk+1⋅∂Pi,jk∂X:,jk
其中,
∂Ps,tk∂Xi,jk=0 ⇔ i=s, j=t⇒∂Pi,jk∂X:,jk=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡0⋮0f′(Pibjk), row=i0⋮0⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤Dk×1
∂Xsbtk∂Pi,jk+1=∂Xsbtk∂(∑m=1DkWi,mk+1Xmbjk+bik+1)=Wi,sk+1 ⇔ j=t
∂X:,jk∂P:,jk+1=Wk+1
代入得到:
∂Pi,jk∂L=∂P:,jk+1∂L⋅Wk+1⋅⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡0⋮0f′(Pibjk), row=i0⋮0⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤Dk×1=∂P:,jk+1∂L⋅W:,ik+1⋅f′(Pibjk)
行扩展:
∂P:,jk∂L=(∂P:,jk+1∂L⋅Wk+1)⊙f′(P:,jk)T
列扩展:
∂Pk∂L=(∂Pk+1∂L⋅Wk+1)⊙f′(Pk)T(1)
可见需要递推求解,即反向传播。考虑输出层(第 n 层):
∂Pi,jn∂L=∂y:,j∂L⋅∂Pi,jn∂y:,j=∂y:,j∂L⋅∂Pi,jn∂foutput(P:,jn)=∂y:,j∂L⋅foutput′(Pi,jn)
行扩展:
∂P:,jn∂L=∂y:,j∂L⊙foutput′(P:,jn)T
列扩展:
∂Pn∂L=∂y∂L⊙foutput′(Pn)T(2)
接下来考虑权重梯度:
∂Wi,jk∂L=∂Wi,jk∂Pi,:k⋅∂Pi,:k∂L=∂Xsbtk∂(∑m=1Dk−1Wi,mkXm,:k−1+bik)⋅∂Pi,:k∂L=Xj,:k−1⋅∂Pi,:k∂L
行扩展:
∂Wi,:k∂L=Xk−1⋅∂Pi,:k∂L
列扩展:
∂Wk∂L=Xk−1⋅∂Pk∂L(3)
考虑偏置梯度:
∂bk∂L=∂bk∂Pi,:k⋅∂Pi,:k∂L=∂Xsbtk∂(∑m=1Dk−1Wi,mkXm,:k−1+bik)⋅∂Pi,:k∂L=J1×Db⋅∂Pi,:k∂L
列扩展:
∂bk∂L=J1×Db⋅∂Pk∂L(4)
梯度下降,更新权重与偏置(维度对齐):
W(s+1)k=W(s)k−α⋅∂W(s)k∂LT(5)
b(s+1)k=b(s)k−α⋅∂b(s)k∂LT(6)
联立 (1),(2),(3),(4),(5),(6):
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧∂Pn∂L=∂y∂L⊙foutput′(Pn)T∂Pk∂L=(∂Pk+1∂L⋅Wk+1)⊙f′(Pk)T∂Wk∂L=Xk−1⋅∂Pk∂L∂bk∂L=J1×Db⋅∂Pk∂LW(s+1)k=W(s)k−α⋅∂W(s)k∂LTb(s+1)k=b(s)k−α⋅∂b(s)k∂LT